If it's not what You are looking for type in the equation solver your own equation and let us solve it.
5x^2-50x+108=0
a = 5; b = -50; c = +108;
Δ = b2-4ac
Δ = -502-4·5·108
Δ = 340
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$
The end solution:
$\sqrt{\Delta}=\sqrt{340}=\sqrt{4*85}=\sqrt{4}*\sqrt{85}=2\sqrt{85}$$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(-50)-2\sqrt{85}}{2*5}=\frac{50-2\sqrt{85}}{10} $$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(-50)+2\sqrt{85}}{2*5}=\frac{50+2\sqrt{85}}{10} $
| 2x/8-5=15 | | ,15=2m-7 | | P=(3x+10)+(2x+5)+(3x+5) | | 5x^2+4/9=0 | | ،15=2m-7 | | 52+x=52-x | | x/22=(-5) | | 3x-3=81-x | | 4(x-2)=200 | | 2x²+5x+3=4x²-22 | | 8b=(-6) | | 4(x+14)=3x+292 | | 2x+6=250 | | 2x+3=2.5(×-2) | | 35+x=4+2x | | 5(x+1)=4x+50 | | 4(x+14)=3x+72 | | t−5=−3 | | –5w+10=5w | | Y=(x²+1)(x³-1) | | 2p-6=8+(p+9) | | (5−3x)(3x+5)x−13(1−3x)(9x2+3x+1)+(2x−3)(9+6x)−13=(4x−1)2−14−x(4x−11) | | (x+x*0.15)-(x-x*0.05)=6 | | x+-2=35 | | X+2,5x=80 | | (X²+6x-4)=(2x-4) | | 36=3.14*r+2r | | p=2(I+3) | | -6x+25=4x-15 | | 2/5c18=0 | | 22.8+0.4x=50 | | 3^(4x)=27 |